Electrical Design for Part 9 Building Electrification Energy Save New West – Breakfast Meeting

Riverside Energy Systems

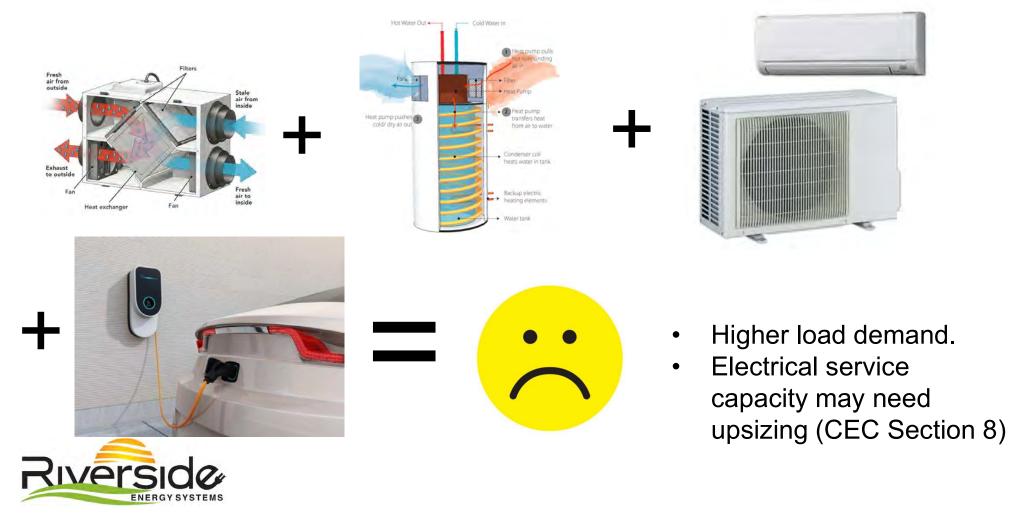
Solar PV and storage based electrical energy systems

- Consulting, feasibility, advising, engineering, and design
- Installation, maintenance, electrical contracting
- Grid connected, Off-Grid, Micro-grids
- Zero Energy Buildings, Electrification Design and Advising
- Solar Ready, Net-Zero, Net-Zero Ready, LBC
- Residential, commercial, and industrial
- Training for construction professionals and Indigenous communities
- Established in Kamloops since 1995
- > Available for work throughout BC.

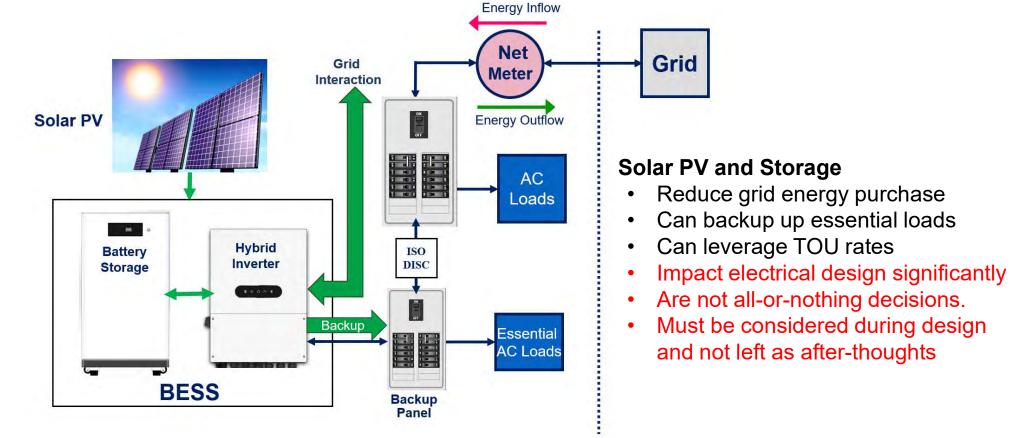
Ben Giudici 778-220-2496 <u>ben@riversideenergy.ca</u> <u>www.riversideenergy.ca</u>

Overview

- 1. Why Electrical Design Matters for Part 9 Buildings
- 2. Part 9 Building Electrification Challenges
 - a) CEC Electrical Service Sizing vs Utility Distribution Standards
 - b) CEC Sections 64 and 84 Renewable Energy and Energy Storage
- 3. Changing a Home's Electrical Personality (Limiting Service Demand)
 - a) Careful ASHP Equipment Selection
 - b) Load Limiting, Selection, and Prioritizing
 - c) Demonstrated Load
- 4. Solar PV and Storage
 - a) Energy consumption reduction
 - b) Grid synergies
- 5. Case Studies
 - a) Contemplated energy retrofit with classic methods and Demonstrated Load
 - b) New Zero-Energy build with solar PV and storage
- 6. Call to Action Achieving Best Results

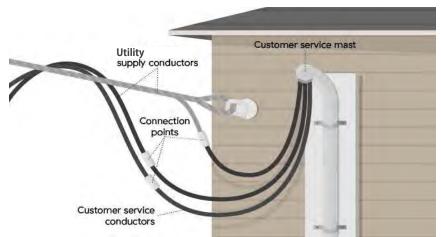


Why Electrical Design Matters for Part 9 Buildings


- Electrification can dramatically affect electrical service sizing requirements, and overall retrofit costs.
 - Service upgrades costs \$6k \$12k for service panel and supply conductors.
 - > Much more if utility transformer or secondary conductor upgrades required.
 - > In some instances, service upsizing may not even be possible.
- Electrical service sizing and electrical demand mitigation considerations during design stage can yield significant savings, and improved project outcomes.
- Solar PV and storage (present or future) have significant electrical design impacts to be considered up front for best results.

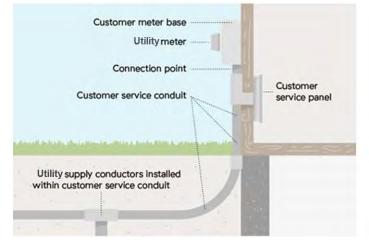
Part 9 Building Electrification Challenges – Electrical Service

Part 9 Building Electrification Challenges – Solar PV and Storage



6

Customer Service Constraints

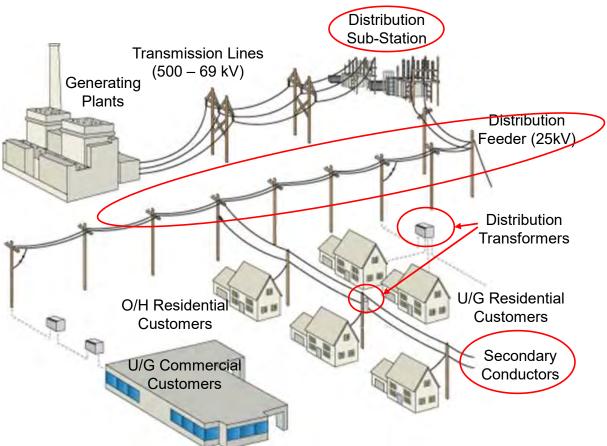

• Upgrading costs vary dependent on customer service type.

Overhead Service

• Supply conductors most easily upsized.

Underground Service

• Supply conductor upsizing requires excavation, driveway cutting/repairs, landscaping disruptions, etc.

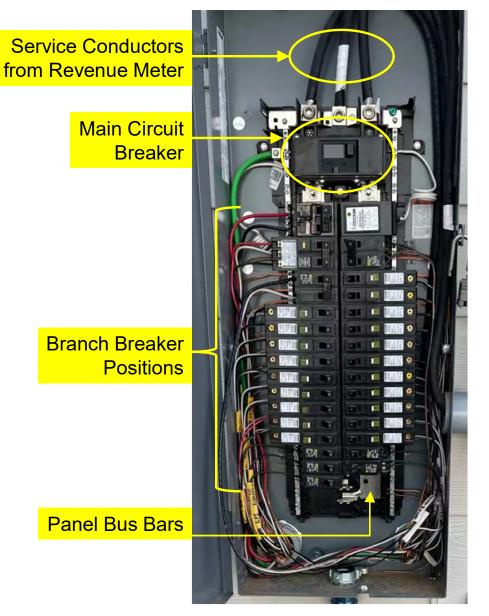


Utility Infrastructure Limitations

Multiple neighborhood or service area service upgrades can require utility infrastructure upgrades including:

- Substation equipment
- Distribution feeders
- Distribution transformers
- Secondary conductors.

Expensive, difficult, or even impossible in some regions.


CEC Section 8 – Service Sizing Requirements

- Safety centered to avoid service overload under worst case scenarios. Loads assumed to be Concurrent
- Founded on 3 principles
 - a) Service sizing based on load calculations Not our choice of service main breaker or fuse (OCPD)
 - b) Living area (m²) dictates continuous basic loading (load is never less)
 - c) Heavy loads (> 1500W) assumed to all run concurrently.
- Includes permissible load control methods that may lessen service upgrading requirements if carefully applied.

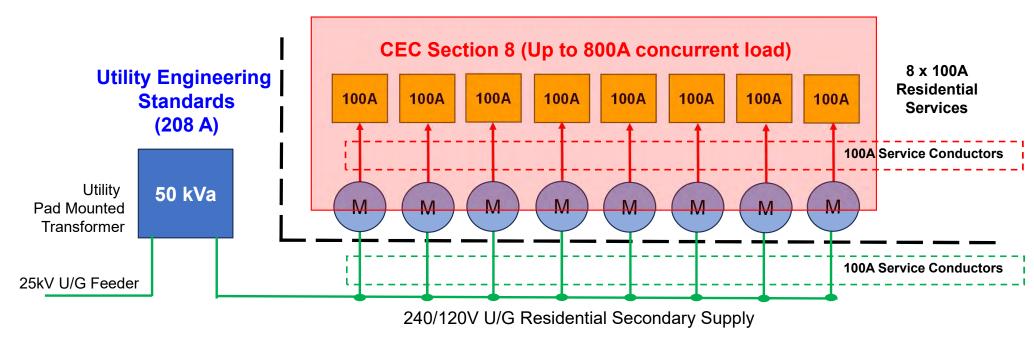
Terminology

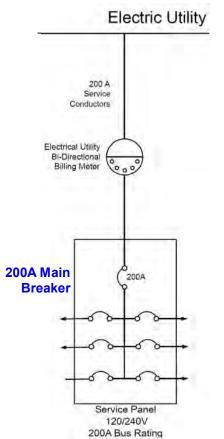
- **1. Service Size** is the current rating (Amps) of main breaker and service conductors. Eg. 100A, 200A, etc.
- 2. Panel Size and Panel Rating are often interchanged and confused.
 - a) Panel Rating is the maximum allowable fuse or breaker size for protecting the panel. Eg. 100A, 200A,
 - **b) Panel Size** is the number of usable single pole breaker positions. Eg. 42 circuit, 60 circuit, etc.
- 3. Bus or Lug Rating is the maximum continuous current rating of the panel bus bars. Bus ≥ Main CB rating.
 - Eg. 200A Panel, 200A main CB, 42 circuit, 225A bus.

Utility Distribution Infrastructure Sizing

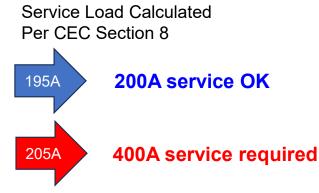
Engineering Standards based on empirical operating experience.

- > What is the likely maximum load? vs What is the worst possible loading?
- Loads WILL NOT all run concurrently. Loads assumed to be Diverse
- > Utilities are not required to follow CEC design practices.

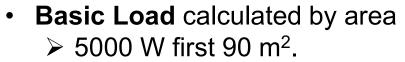

Residential 50 kVA Pad-Mounted U/G Distribution Transformer (208A Full Load at 120/240V)


CEC Service Sizing vs Utility Distribution Capacity

- Utility Engineering Standards Empirical, Cost effective. Loads Diverse (208A)
- CEC Section 8 Caution for consumer safety. Loads Concurrent (800A)



Service OCPDs Do Not Limit or Justify Service Size



- Service sizing must be based on the nature and size of Connected Load, and Living Area.
- CEC does not permit the tripping of a 200A main service breaker on sustained overload, to justify connecting more than 200A of calculated service load. Rather, a 400A service is required.

Living Area (m²) Dictates Continuous Basic Load

Ground Floor Area (m ²)	0
Living Area Above Ground Floor (m2)	147.1
Living Area Below Ground Floor (m2) x 70%	51.5
Effective Living Area (m2) 8-110 a,b,c	198.6
Basic Load (first 90 m2) 5000 W	5000
Additional (per 90 m2 Increment) 1000 W	2000
Effective Base Load (Watts) 8-200, 1a	7000
Effective Base Load (Amps)	29.2

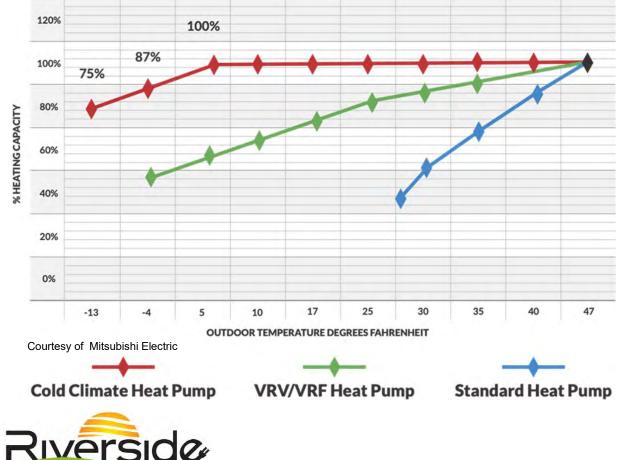
- 1000 W per additional 90 m² or portion.
- **Basic Load** considered continuous (i.e. Load never less than this)
- 7000 W (29.2 Amps) for two story 2375 ft² case study home
- 29.2% of 100A service capacity used by prescriptive basic load
 > Only 70.8A left to work with.

Continuous Loads (>1500W) Assumed to All Run Concurrently

- Space Heating
- Air Conditioning
- Electric DHW
- Electric Range
- Electric Dryer
- EV Charging
- > Others
 - \circ Hot Tub
 - o Sauna

Some derating is permitted but these can quickly use up any remaining service capacity margin

Burnaby Case Study Home with a 100A Service Before Retrofit

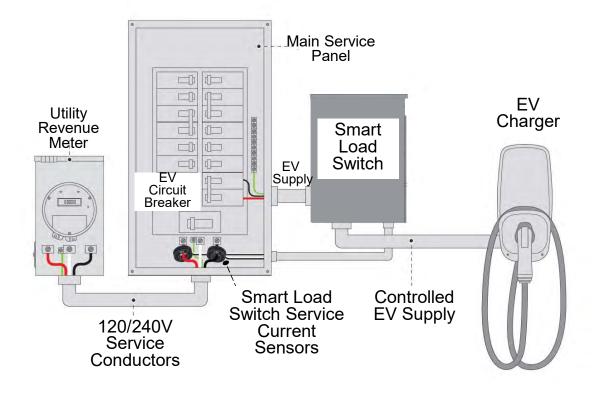

CEC Section 8 -200					
Single Dwelling Residential S	ervice S	izing			
Continuous Loads	<u>Num</u>	Rated Watts	<u>Rule</u>	Eff. Watts	<u>Amps</u>
Electric Oven Load	1	7500	8-200 1a, iv)	6000	25.0
Electric Dryer (30A @ 0.8)	1	5760	8-200 1a, vii)	1440	6.0
Total Effective Loads				7440	31.0
Effective Base Loads				7000.0	29.2
Continous Current	Service	Size is OK			60.2
Main OCB Device Rating (Amps)	100				
Derating Factor	80%				
Maximum Demand Current (Amps)	80				

- 2375 ft² home
 - NG Furnace 1975
 - ➢ NG DHWT
 - NG Cooktop
 - Electric Oven
 - Electric Dryer
- 100 Amp service suffices before retrofits.
- F280 40,985 BTU heating load.

Changing a Home's Electrical Personality

1. Careful Equipment Sizing and Selection – eg. ASHP (HVAC Designer)

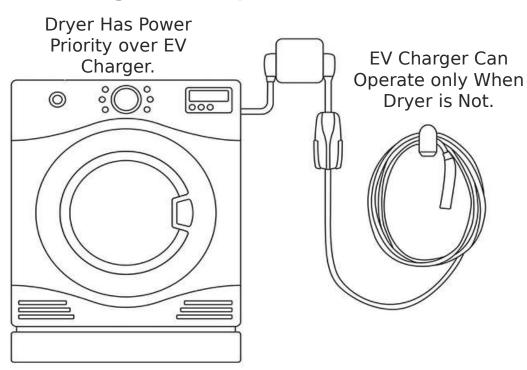
- Extending cold temp operating range with CCHP may lower or eliminate supplemental heat dependence.
- Alternate supplemental heat to electric can accomplish the same
- eg. NG


Changing a Home's Electrical Personality

2. CEC Section 8 – Allowable Load Demand Limiting Methods Electrical Contractor/Designer

- EV charger load can be eliminated from service sizing calculation if charging is enabled/disabled by service demand current measurement. (Control)
 > Rule 8-106, 11)
- If multiple loads are connected such that only one may operate at once, only largest load need be considered in service sizing calculation. (Interlock)
 > Rule 8-106, 2) and 3)
- Service sizing calculation for electrical retrofits can be justified based on historical load measurements (Demonstrated Load). Helpful for retrofits. (Measure)
 > Rule 8-106, 9)

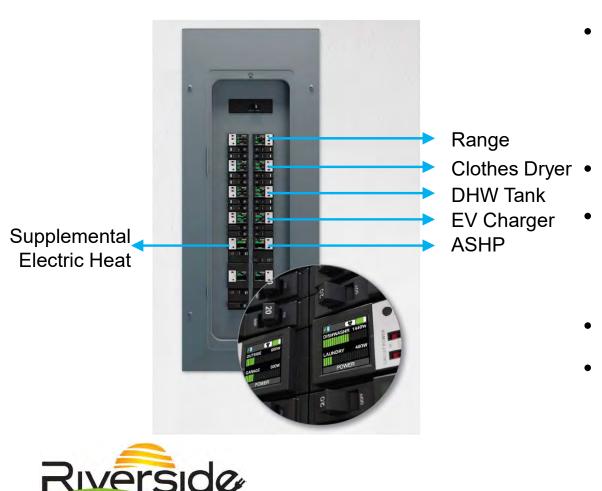
Load Limiting Methods (Smart Load Switches)


Smart Load Switch measures service currents, and allows load to be powered only if service will not be overloaded

EV charger can operate only when charger operation will not exceed the service size rating.

By **Rule 8-106, 11)**, EV charger load can be excluded from service sizing calculations.

Load Limiting (Smart Splitter - Interlocking)



Plug-in Smart Splitter on 240VAC Outlet

Riverside

- Smart Splitter selects one load over another on a single shared supply circuit.
- EV charger can operate only if the electric dryer is not operating.
- Rule 8-106, 2) 3) requires only the larger of the two loads to be included in service sizing calculation.

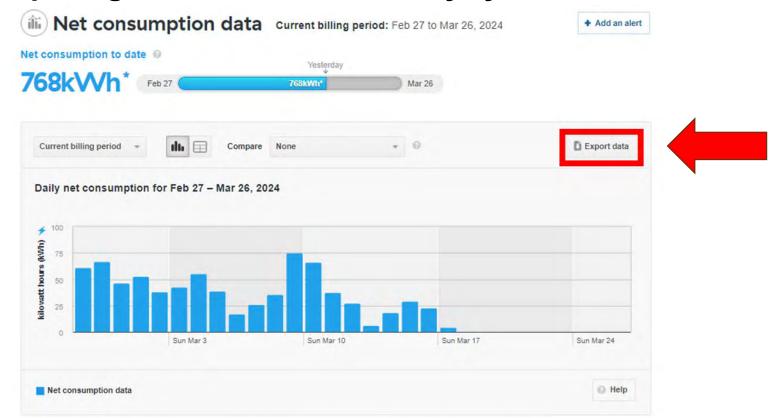
Prioritized Load Enabling/Shedding (Smart Panels)

- Smart Panel selectively enables/disables continuous electrical loads based on real-time service current measurements.
- er Sophisticated form of interlocking
 - Loads prioritized based on available service current margin and programmed load shedding.
 - Rules 8-106 2) 3) and 8-106 11).
 - Not widely endorsed by safety authorities yet
 - Recently approved by Ontario electrical safety authorities.

Using the Demonstrated Load Clause Rule 8-106, 9)

- Historical load measurements may be used to justify remaining electrical service capacity for electrical retrofits versus the classic approach.
- Historical load measurements may be completed by a qualified professional (Electrical FSR, Electrical Engineer) using one of:
 - 12 month (or more) hourly kWh utility data to estimate maximum load.
 - 12 month (or more) third party power/energy data logger; 1hr or smaller sampling intervals.
- New Westminster smart meter program (AMI) circa Fall 2025. The City may wish to plan for this type of data availability to utility customers.

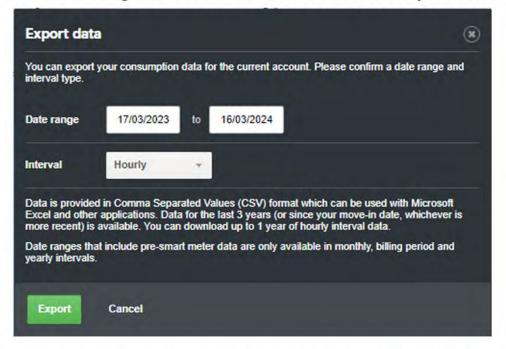
Acquiring 1 Hr Meter Data via MyHydro Website


- 1. Sign in to customer's MyHydro Account
- 2. Navigate to the Consumption Graphs

Accounts En	ergy savings New	s Projects & opera	ations Community	Work with us	Outages & safety
MyHydro Bil	ling & payments - M	oving • Electrical cor	nections - Electricity r	ates & energy use -	Get help -
Rates	Conservation &	Outage Resources	My Profile	Connection requests	Account access
lew Bill	Consumption graphs	Report an Outage	Change Password Remove Profile	View connection requests	Data export centre
atch-up payment Ian	Team Power Smart Peak Saver		Subscriptions & Alerts	Start connection request	
	Peak Saver Timeline		Pending Invitations Customer support	Link connection request	
	HydroHome service		centre	Net metering application	

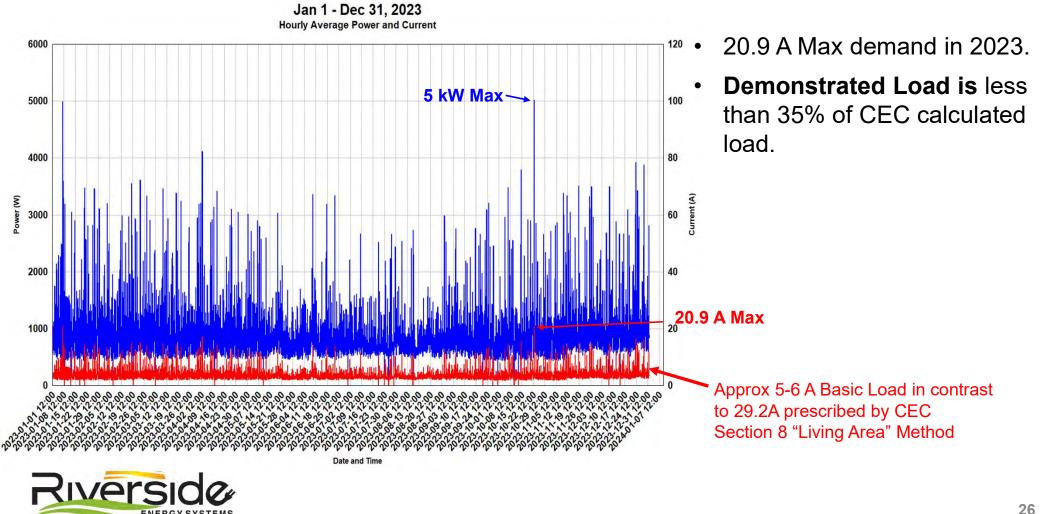
3. Click Export data

Acquiring 1 Hr Meter Data via MyHydro Website



The consumption data presented here is to help you manage your consumption and find ways to save energy. It is not used for billing purposes. Learn more here. * This is an estimate. We don't include taxes and other fees which appear on your bill.

Acquiring 1 Hr Meter Data via MyHydro Website


4. Set the date range for the previous 365 days and ensure the *Interval* is set to *Hourly*. If the date range is more than 12 months, hourly data will not be available.

5. Click Export. The file will download into your browser as a *.csv type.

Demonstrated Load – Burnaby Case Study Home Before Retrofit

Burnaby Case Study Home with ASHP Retrofit – CEC Classic Method

CEC Section 8 -200					
Single Dwelling Residential S	ervice S	izing			
Continuous Loads	Num	Rated Watts	<u>Rule</u>	Eff. Watts	<u>Amps</u>
Electric Range Load	1	7500	8-200 1a, iv)	6000	25.0
Electric Dryer (30A @ 0.8)	1	5760	8-200 1a, vii)	1440	6.0
Air Source Heat Pump 3 Ton	1	3500		3500	14.6
Supplementary Electric Heat	1	10000		10000	41.7
Total Calculated Load				20940	87.3
Effective Basic Load				7000	29.2
Continous Calculated Current	Larger S	Service Neede	d		116.4
Main OCB Device Rating (Amps)	100				
Permissible for Calculated Load	100%			•)	• \
Maximum Demand Current (Amps)	100				

• 2375 ft² home

•

- > NG DHWT
- NG Cooktop
- Electric Oven
- 3 Ton ASHP Retrofit with 10 kW electric supplemental heat.
- Minimum 125A service upgrade required unless impacts can be mitigated.

Burnaby Case Study Home with ASHP Retrofit – CEC Classic Method

CEC Section 8 -200					
Single Dwelling Residential S	ervice S	Sizing			
<u>Continuous Loads</u>	Num	Rated Watts	<u>Rule</u>	Eff. Watts	<u>Amps</u>
Electric Range Load	1	7500	8-200 1a, iv)	6000	25.0
Electric Dryer (30A @ 0.8)	1	5760	8-200 1a, vii)	1440	6.0
Cold Climate Heat Pump 3 Ton	1	3500		3500	14.6
Total Calculated Load				10940	45.6
Effective Basic Load				7000	29.2
Continous Calculated Current	Service	Size is OK		_	74.8
Main OCB Device Rating (Amps)	100			- • •	
Permissible for Calculated Load	100%				/
Maximum Demand Current (Amps)	100				

- 2375 ft² home
 - ➤ NG DHWT
 - NG Cooktop
 - Electric Oven
 - 3 Ton CCHP with no supplemental heat
- 100 A service suffices with considerable additional margin

Burnaby Case Study Home with ASHP Retrofit – CEC Classic Method

CEC Section 8 -200					
Single Dwelling Residential S	ervice S	izing			
Continuous Loads	Num	Rated Watts	<u>Rule</u>	Eff. Watts	<u>Amps</u>
Electric Range Load	1	7500	8-200 1a, iv)	6000	25.0
Electric Dryer (30A @ 0.8)	1	5760	8-200 1a, vii)	1440	6.0
	1	2500		2500	14.0
Cold Climate Heat Pump 3 Ton	1	3500		3500	14.6
Electric DHW	1	4000		4000	16.7
	_				
Total Calculated Load				14940	62.3
Effective Basic Load				7000	29.2
Continous Calculated Current	Service	Size is OK			91.4
					-
Main OCB Device Rating (Amps)	100				
Permissible for Calculated Load	100%				
Maximum Demand Current (Amps)	100				

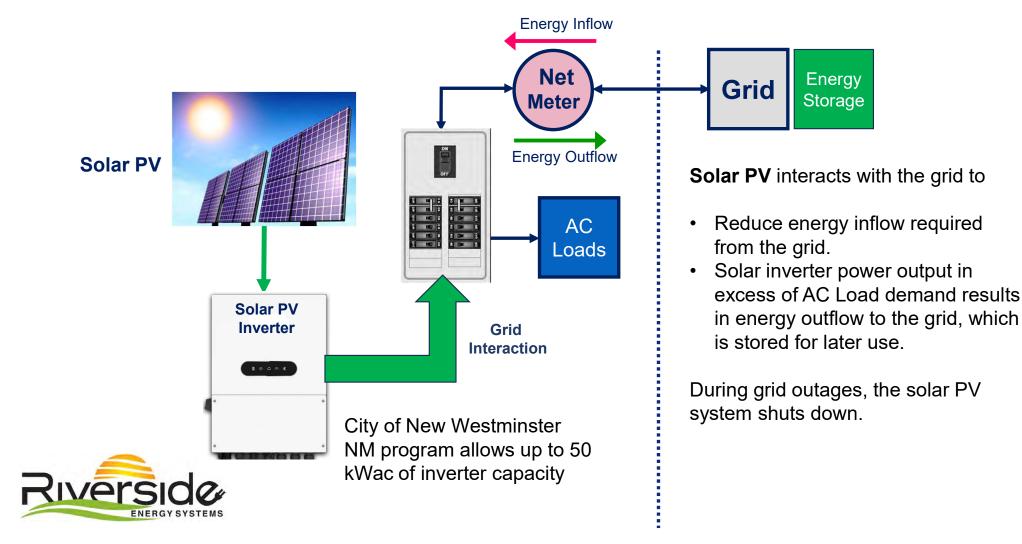
- 2375 ft² home
 - NG Cooktop
 - Electric Oven
 - 3 Ton CCHP with no supplemental heat
 - Electric DHW
- 100 A service is sufficient.

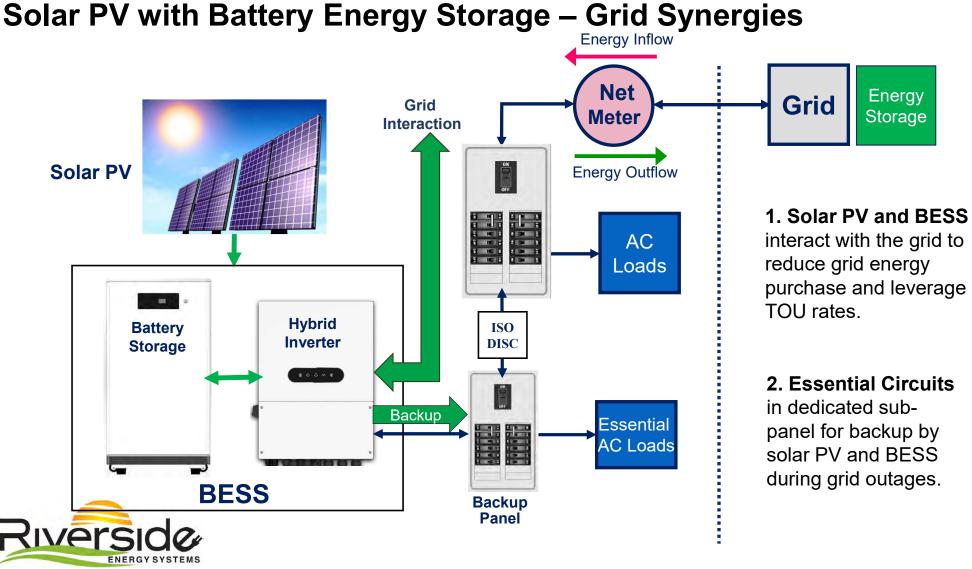
TSBC –CEC 8-106 "Demonstrated Load" for Single Family Dwellings IB-EL 2022-01

Where loads are to be added, augmented load may be calculated by

- adding the sum of the additional loads, to the "Maximum Demand Load" of the existing installation as measured over the most recent 12-month period.
- *"Maximum Demand Load" may be obtained using maximum utility 1 hr interval data for existing demand over the last 12 (or more) months X 125%*
- The new load (hot tub, electric vehicle charger, etc.) can then be added to the utility supplied load to calculate the new demand.

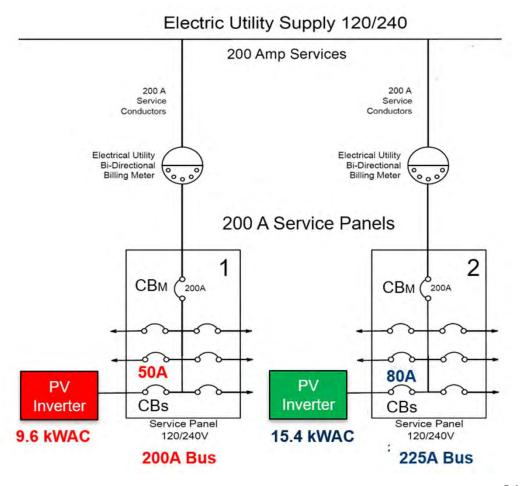
Kamloops case study home maximum demand load was 20.9 A for 24 months. Maximum Historical Utility Data x $125\% = 1.25 \times 20.9A = 26.1 A$


Burnaby Case Study ASHP Retrofit – Demonstrated Load Method


CEC Section 8 -200					
Single Dwelling Residential Se	rvice S	izing			
Continuous Loads	<u>Num</u>	Rated Watts	<u>Rule</u>	Eff. Watts	<u>Amps</u>
Maximum Historical Utility Data x 1.25				6270	26.1
Cold Climate Heat Pump 3 Ton	1	3350		3350	14.0
Supplemental Heat	1	10000		10000	41.7
Electric DHW	1	4000		4000	16.7
Augmented Continuous Load					98.4
Continous Calculated Load Current	Service	Size is OK			98.4
Main OCB Device Rating (Amps)	100				
Permissible for Calculated Load	100%				
Maximum Demand Current (Amps)	100				1

- 2375 ft² home
 - NG Cooktop
 - Electric Oven
 - 3 Ton CCHP Retrofit with 10 kW electric supplemental heat.
 - Electric DHW
- 100 A service is sufficient, even with electric DHW and 10 kW electric supp. heat.

Integrating Solar PV under Net-Metering



Solar PV Electrical Design - CEC 64-112 Point of Connection

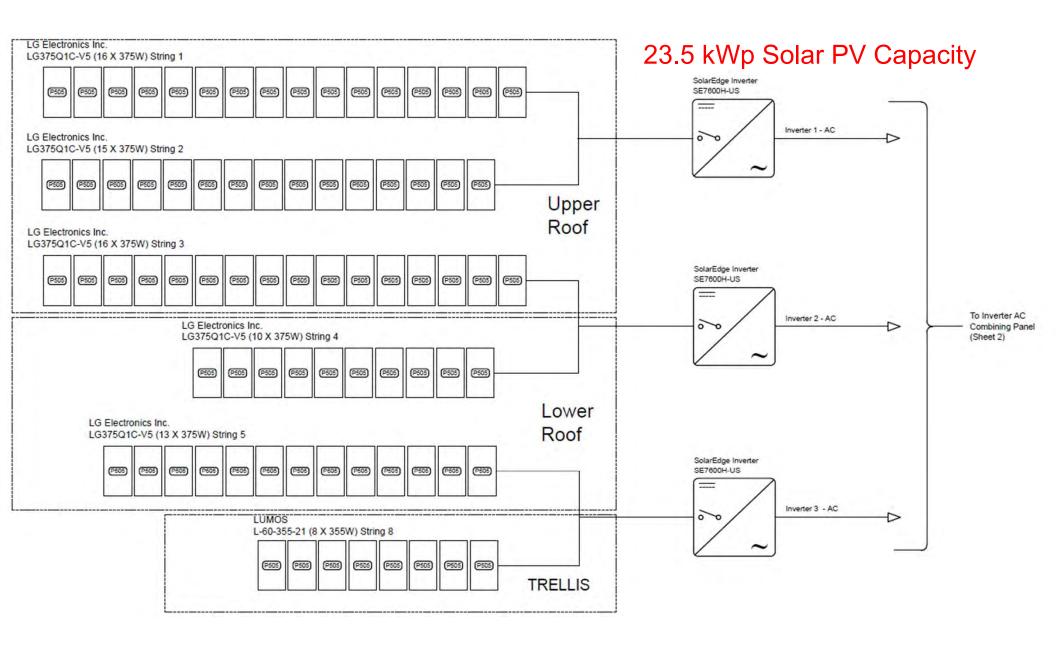
- PV system generates a service panel via a solar system circuit breaker CBs.
- CEC 64-112 limits PV system inverter size based on bus capacity if multiple sources power the service panel.
- CBs ≤ 1.25 x Bus Capacity CBм
- Two panels with same rating but differing bus capacity will accommodate different levels of solar PV generation.
- Consider carefully in electrical design to avoid inadvertently limiting PV options.

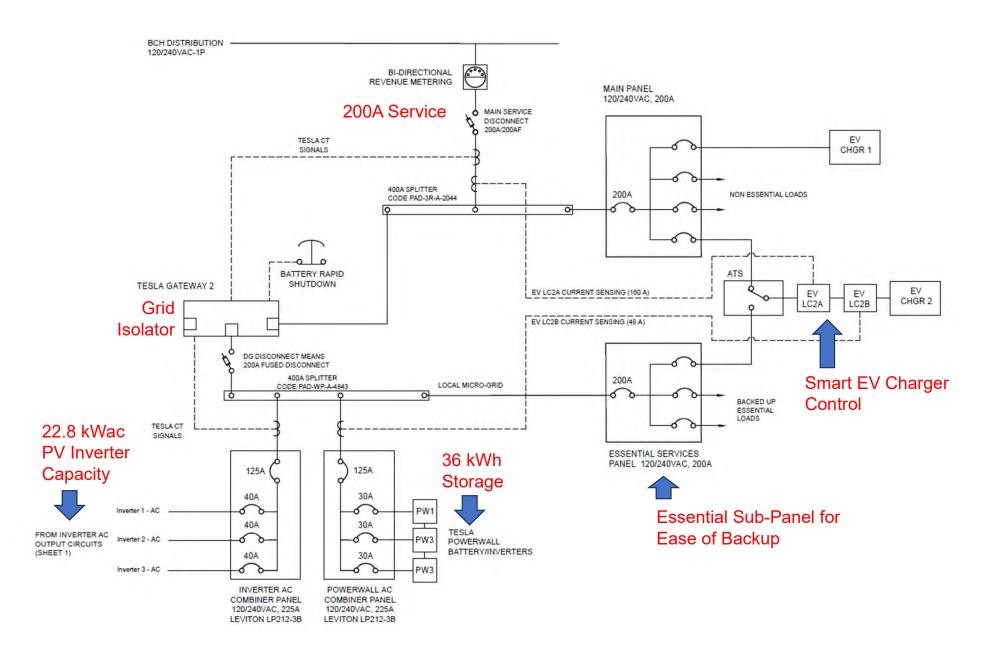
Solar PV Electrical Design – Additional Considerations

- Space allocated for
 - ➢ lockable solar AC disconnect required by CEC and utility.
 - solar inverters if not on the roof-top
- Routing plan for solar PV cables, conduits, or raceways between PV system equipment and the point-of-connection to the grid.
 - DC circuits must be metal-encased entering the building. Solar module strings up to 600 VDC.
- Provisions for hybrid inverter and storage; now or future.
 - ➢ Battery locations and sizing limited by CEC 2021.
 - > Hybrid inverter must be near battery storage (within 10 ft).
 - > Wire essential loads into a designated sub-panel to simplify future backup.
- Don't let solar PV and storage be an after-thought.



Case Study – Living Building Challenge - Insightful Healthy Homes, Vancouver BC


LBC goes well beyond Net-Zero energy targets to include grid-resilience and sustainability measures


- Fully electrified.
- Grid connected solar PV production ≥105% of annual electrical consumption
- Energy storage sustains essential loads backup for 7- day grid outage
- Rain water collection reduces reliance on domestic water supply
- Restrictions on allowable construction materials

East Roof

Call to Action – Achieving Best Electrification Results

- 1. Be mindful how electrification impacts electrical service sizing.
- 2. Realize electrical service upgrades are expensive, and may even unavailable in some utility jurisdictions.
- 3. Classic service sizing calculations can trigger service upsizing that may not always be warranted.
- 4. CEC section 8 provides methods that mitigate service impacts including:
 - Reducing peak service demand using Smart Load Switches/Splitters, etc
 - "Demonstrated Load" approach to confirm electrical service capacity margin based on historical hourly consumption data.

5. Solar PV and storage (BESS) both impact electrical design significantly, and **MUST BE** considered along with electrical service sizing and load management at design stage. **Don't let solar and storage be an after-thought.**

Questions?

Ben Giudici 778-220-2496 <u>ben@riversideenergy.ca</u> <u>www.riversideenergy.ca</u>

